

- We count in base 10 (called decimal counting), meaning we have 10 unique digits, and then we use a positional number system to represent larger numbers
- Once we get to the largest number in any position, we increment the next highest unit
- Base 10 is really only useful for humans: we have ten fingers
- Our clock, however, is a hybrid:
- There are 60 seconds in a minute
- There are 60 seconds in an hour
- There are 24 hours in a day
- You know that
- One second after 23:59:59 is 0:00:00 the next day
- The next highest number after 999 is 1000

Counting in binary

- If we only accept two bits (0 and 1 , or 0 V and 5 V), it may seem much worse, but it's still manageable:

$\theta b 0$
$\theta b 1$
$\theta b 10$
$\theta b 11$
$\theta b 100$
$\theta b 101$
$\theta b 110$
$\theta b 111$
$b 1000$
$b 1001$

Counting in binary

- These first ten non-zero binary numbers could therefore represent the number of "I"s shown here

Qb0	
0 b 1	I
Qb10	II
Ob11	III
Ob100	IIII
Ob101	IIIII
Ob110	IIIIII
0b111	IIIIIII
0b1000	IIIIIIII
0b1001	IIIIIIIII
0b1010	IIIIIIIIII
0b1011	IIIIIIIIIII

- In decimal, each successive digit represents a higher power of ten:

$$
\begin{aligned}
10 & 10^{1} \\
100 & 10^{2} \\
1000 & 10^{3} \\
10000 & 10^{4}
\end{aligned}
$$

- In binary, each successive digit represents a higher power of two:

$0 b 10$	$2^{1}=2$
$0 b 100$	$2^{2}=4$
$0 b 1000$	$2^{3}=8$
$0 b 10000$	$2^{4}=16$

Counting in binary

There are only 10 types of people in the world.

Those who understand binary, and those who do not.

Binary real numbers

Binary real numbers

- Similarly,

Note: Every decimal integer is followed by an implied decimal point
Every binary integer is followed by an implied radix point

- Just like addition with decimal numbers, you can do the same with binary, you only have to remember:

 Multiplication

- Just like multiplication with decimal numbers, you perform the same operations here, too, only it is easier, just more tedious

			$\begin{array}{r} 1100101110000010 \\ \times \underline{101000101} \end{array}$
	359801	111011	1100101110000010
42	$\times \quad 4327$	$\times 1011$	0000000000000000
$\times \underline{61}$	2518607	111011	110010111000001000
42	7196020	1110110	0000000000000000000
+ 2520	107940300	00000000	00000000000000000000
2562	+ $\underline{1439204000}$	+ 111011000	000000000000000000000
	1556858927	1010001001	1100101110000010000000
			00000000000000000000000
			$+\frac{110010111000001000000000}{100000010010111000001010}$
			00000100101110000001010

- We will not be performing difficult addition or multiplication problems in binary
- The computer does these calculations and conversions
- They will be reduced to adding 1 or multiplying by 10

Verbosity

- One weakness of binary numbers is that they are verbose:
- A binary number representing the same quantity as the corresponding decimal number will have approximately 3.322 times as many digits
$999 \quad 2^{10}=1024$
Qb1111100111 Ob1000000000

10659860817235789230
0b1001001111101111011011101110111101010110011100011100010110101110

```
2}100-1=1267650600228229401496703205375
```

211

- We will need binary numbers, because that is how almost everything in the computer is stored
- Unfortunately, it's very difficult to convert from binary to decimal and vice versa... ${ }^{*}$

- Instead, note that there are 16 different quadruple of binary digits:

0b0000	0
-b0001	1
-b0010	2
0b0011	3
-b0100	4
- 0101	5
0b0110	6
0b0111	7
-b1000	8
0b1001	9
0b1010	10
0b1011	11
0b1100	12
-b1101	13
0b1110	14
0b1111	15

 4-bit translation

- Always start by grouping binary digits around the radix point and add extra zeros at the start to make a multiple of 4 binary digits:

 4-bit translation

- Represent every quadruple with a unique digit:

0b0000	0
0b0001	1
0b0010	2
0b0011	3
0b0100	4
0b0101	5
0b0110	6
0b0111	7
0b1000	8
0b1001	9
0b1010	a
0b1011	b
0b1100	c
0b1101	d
0b1110	e
0b1111	f

We ran out of digits..
.we could pick digits from another language, say Arabic?

 4-bit translation

- To go the other way, just replace of our 4-bit translations by the corresponding quadruple:

- What we are actually doing is representing the numbers in base 16
- This is called hexadecimal (base six-and-ten)
- Often abbreviated as "hex"
- This is where the " x " comes form in " $0 x$ "
- Again just like binary uses two digits:

0 and 1
decimal uses ten digits:
0 through 9
hexadecimal uses sixteen digits 0 through f

- It is used for nothing more than a compact representation of binary
- Conversion between decimal and hex and vice versa is difficult
- To convert between binary and hex is easy
- Just remember to always start at the radix point
- What you really need to know for this course: $9+1=a, f+1=10$

$0 \times 27 a 932 f 8$	$0 \times 27 a 93307$
$0 \times 27 a 932 f 9$	$0 \times 27 a 93308$
$0 \times 27 a 932 f a$	$0 \times 27 a 93309$
$0 \times 27 a 932 \mathrm{fb}$	$0 \times 27 a 9330$
$0 \times 27 a 932 \mathrm{fc}$	$0 \times 27 a 9330 \mathrm{~b}$
$0 \times 27 a 932 \mathrm{fd}$	$0 \times 27 a 9330 \mathrm{c}$
$0 \times 27 a 932 \mathrm{fe}$	$0 \times 27 a 9330 \mathrm{~d}$
$0 \times 27 a 932 \mathrm{ff}$	$0 \times 27 \mathrm{a} 9330 \mathrm{e}$
$0 \times 27 a 93300$	$0 \times 27 a 9330 f$
$0 \times 27 a 93301$	$0 \times 27 a 93310$
$0 \times 27 a 93302$	$0 \times 27 a 93311$
$0 \times 27 a 93303$	$0 \times 27 a 93312$
$0 \times 27 a 93304$	$0 \times 27 a 93313$
$0 \times 27 a 93305$	$0 \times 27 a 93314$
$0 \times 27 a 93306$	$0 \times 27 a 93315$
$0 \times 27 a 93307$	$0 \times 27 a 93316$

- These are consecutive hexadecimal numbers $0 \times 27 a 932 f b$ $0 \times 27 a 932 \mathrm{fc} \quad 0 \times 27 a 9330 \mathrm{~b}$ $0 \times 27 a 932 \mathrm{fe} \quad 0 \times 27 a 9330$ $0 \times 27 a 93300$ $0 \times 27 a 93301$ $0 \times 27 a 93302$ 0×27 93303 0x27a93304 $0 \times 27 a 93306$ $0 \times 27 a 93307$
$0 \times 27 a 9330 \mathrm{~d}$
0x27a9330f 0x27a93310 0×27 0x27a93313 0x27a9331 $0 \times 27 a 93316$
- Following this lesson, you now
- Understand that computer use binary numbers
- Know that the digits 0 and 1 are called bits
- Binary numbers are prefixed by "0b"
- See that binary addition and multiplication mirrors decimal addition and multiplication
- Understand that binary numbers are verbose and hexadecimal representations are more compact
- Hexadecimal numbers are prefixed by " $0 x$ "
- Know how to translate between binary and hexadecimal and back - You don't care what decimal value a hexadecimal number is...

[1] Wikipedia:
https://en.wikipedia.org/wiki/Binary number
https://en.wikipedia.org/wiki/Hexadecimal
https://simple.wikipedia.org/wiki/Hexadecimal numeral system

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

