

- We count in base 10 (called *decimal* counting), meaning we have 10 unique digits, and then we use a *positional number system* to represent larger numbers
 - Once we get to the largest number in any position, we increment the next highest unit
- · Base 10 is really only useful for humans: we have ten fingers
 - Our clock, however, is a hybrid:
 - · There are 60 seconds in a minute
 - There are 60 seconds in an hour
 - There are 24 hours in a day
 - You know that
 - One second after 23:59:59 is 0:00:00 the next day
 - The next highest number after 999 is 1000

0000

- · Base 10 is great for humans: we have five fingers on each hand
- It's more difficult for computers:
 - Numbers are stored as voltages
 - If you want ten different voltages representing ten different digits, you must recognize and store these voltages—this is very difficult
 - It is easier to store, access and manipulate just two voltages: $\,\cdot\,$ Say 0 V and 5 V
 - $-\,$ This leaves us with two digits only, say 0 and 1 $\,$
 - We will describe 0 and 1 as binary digits or bits

1

Binary and hexadecimal numbers 5	Binary and hexadecimal numbers 6 Counting in binary
 If we only accept two bits (0 and 1, or 0 V and 5 V), it may seem much worse, but it's still manageable: 0b0 0b1 0b10 0b11 0b100 0b101 0b101 0b110 0b110 0b100 0b111 0b100 0b101 0b100 0b101 	 Question: Is 100 equal to 10² or 4? We will usually: Prefix binary numbers with "0b" Use the monospaced typeface Consolas Thus: 100011010 is a large decimal number 0b11110110010 is binary for 1970 To start, we will gray-out the "0b"
<u>©©©©</u> ECE1ÇO ₹	@000

- These first ten non-zero binary numbers could therefore represent the number of "I"s shown here

0b 0	
0b 1	Ι
0b 10	Π
0b 11	III
0b 100	IIII
0b 101	IIII
0b 110	IIIII
0b 111	IIIIII
0b 1000	ШШШ
0b 1001	ШШШ
0b 1010	ШШШ
0b 1011	ШШШШ

• Normally, however, we just indicate the decimal number that it is equivalent to

0b 0	0
0b 1	1
0b 10	2
0b 11	3
0b 100	4
0b 101	5
0b 110	6
0b 111	7
0b 1000	8
0b 1001	9
0b 1010	10
0b 1011	11

E150

- The computer does these calculations and conversions
- The computer does these calculations and conversion
 They will be reduced to adding 1 or multiplying by 10

Binary and hexadecimal numbers 14

• Just like multiplication with decimal numbers, you perform the same operations here, too, only it is easier, just more tedious

			1100101110000010
			× <u>101000101</u>
	359801	111011	1100101110000010
42	× 4327	× <u>1011</u>	000000000000000000000000000000000000000
× <u>61</u>	2518607	111011	1100101110000010 <mark>00</mark>
42	7196020	1110110	000000000000000000000000000000000000000
+ <u>2520</u>	1079403 <mark>00</mark>	00000000	000000000000000000000000000000000000000
2562	+ <u>1439204000</u>	+ <u>111011000</u>	000000000000000000000000000000000000000
	1556858927	1010001001	1100101110000010 <mark>000000</mark>
			000000000000000000000000000000000000000
		+	11001011100000100000000
		:	1000000100101110000001010

000		
ADV 4.0 44		

.

• Instead, note that there are 16 different quadruple of binary digits:

0b 00	00	0	
0b 00	91	1	
0b 00 :	10	2	
0b 00	11	3	
0b 01	90	4	
0b 01	91	5	
0b 01 :	10	6	
0b 01 :	11	7	
0b 10	90	8	
0b 10	01	9	
0b 10 :	10	10	
0b 10	11	11	
0b 11	90	12	
0b 11	91	13	
0b 11 :	10	14	
0b 11 :	11	15	

000

• Always start by grouping binary digits around the radix point and add extra zeros at the start to make a multiple of 4 binary digits:

		Øb	0001	0010	1010	0100	1000	1001	1011	0111		
06 00 0	0						_			1 _ I		
0b 0001	1		1	2	а	4	8	9	b	7		
0b 0010	2											
0b 0011	3											
0b 0100	4		_									
0b 0101	5		Т	his bi	inary	num	ber 1	s repi	esen	ted by Ø>	(12a48	9b7
0b 0110	6			– We	will	prefiz	<pre> this </pre>	with	"0x'			
0b 0111	7					•						
0b 1000	8											
0b 1001	9											
0b 1010	а											
0b 1011	b											
0b 1100	с											
0b 1101	d											
0b 1110	e											
0b 1111	f											
000												

• Represent every quadruple with a unique digit:

		0b0000	0	
		06 0001	1	
		0b 0010	2	
		0b 0011	3	
		0b 0100	4	
		06 0101	5	
	This is called a	0b 0110	6	
	look-up table	0b 0111	7	
		0b 1000	8	
		0b 1001	9	
		0b 1010	а	
		0b 1011	b	We ran out of digits
		0b 1100	с	we could pick digits
		0b 1101	d	from another language,
		0b 1110	е	say Arabic?
080		0b 1111	f	

• To go the other way, just replace of our 4-bit translations by the corresponding quadruple:

			6	С	f	0	d	5	3	е	
06 000 0	0										
06 0001	1	0b 0	110	1100	1111	.0000	1101	0101	0011	1110	
0b 0010	2										
0b 0011	3										
0b 0100	4										
0b 0101	5										
0b 0110	6	Thi	s 4-l	oit tr	ansla	tion	repre	sents			
0b 0111	7		•				-			00111110	
0b 1000	8		ΟL	110.	1100	TTTT	0000.	11010	1010	0111110	
0b 1001	9										
0b 1010	а	-	We	strip	ped o	off th	e lead	ling 0)		
0b 1011	b			_							
0b 1100	с										
0b 1101	d										
0b 1110	e										
0b 1111	f										
(i) 14											

Hexadecimal numbers	Hexadecimal numbers			
What we are actually doing is representing the numbers in base 16 — This is called <i>hexadecimal</i> (base six-and-ten)	 What you really need to know These are consecutive hexad 	for this course: 9 + 1 = a, f + 1 = 10 lecimal numbers		
 Often abbreviated as "hex" This is where the "x" comes form in "0x" Again just like binary uses two digits: 0 and 1 decimal uses ten digits: 0 through 9 hexadecimal uses sixteen digits 0 through f It is used for nothing more than a compact representation of binary Conversion between decimal and hex and vice versa is difficult To convert between binary and hex is easy Just remember to always start at the radix point 	0x27a932f8 0x27a932f9 0x27a932fa 0x27a932fb 0x27a932fb 0x27a932fc 0x27a932fc 0x27a932fc 0x27a932fe 0x27a932ff 0x27a93300 0x27a93301 0x27a93302 0x27a93303 0x27a93304 0x27a93304	0x27a93307 0x27a93308 0x27a93309 0x27a9330a 0x27a9330b 0x27a9330c 0x27a9330c 0x27a9330c 0x27a9330e 0x27a9330f 0x27a93310 0x27a93311 0x27a93312 0x27a93313 0x27a93313		
	0x27a93306 @030 0x27a93307	0x27a93315 0x27a93316 ECE		

- · Following this lesson, you now
 - Understand that computer use binary numbers
 - Know that the digits 0 and 1 are called bits
 Binary numbers are prefived by "26".
 - Binary numbers are prefixed by "0b"
 - See that binary addition and multiplication mirrors decimal addition and multiplication
 - Understand that binary numbers are verbose and hexadecimal representations are more compact
 - Hexadecimal numbers are prefixed by "0x"
 - Know how to translate between binary and hexadecimal and back
 - · You don't care what decimal value a hexadecimal number is...

Wikipedia:

https://en.wikipedia.org/wiki/Binary_number https://en.wikipedia.org/wiki/Hexadecimal https://simple.wikipedia.org/wiki/Hexadecimal_numeral_system

ECEILO

000

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

These slides are provided for the ECE 150 *Fundamentals of Programming* course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

0000

CE150